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ABSTRACT

Aryl-triazole pentads have been preorganized with intramolecular hydrogen bonds to enhance chloride binding. This outcome highlights the
dual hydrogen bond donor and acceptor properties of 1,2,3-triazoles.

Recent studies on macrocyclic triazolophanes,1aryl-triazole
foldamers,1b,2 and other triazole-containing molecules3 have
shown that C-H· · ·X- hydrogen bonds are strong enough
to play a major role in the field of anion supramolecular

chemistry.4 Triazolophanes have unexpectedly large halide
binding constants, which take advantage of macrocyclic
preorganization5 to direct four triazole C-H donors and
four phenylene C-H donors into the central cavity. On
the other hand, flexible aryl-triazole oligomers containing
the same number or more of C-H donors have binding
constants that are weaker by orders of magnitude com-
pared to rigid triazolophanes.1b,2 Such effects were also
observed between indole-based macrocycles and foldamers.6

Thus, preorganizing the conformation of receptors is crucial
for obtaining high binding affinities. Herein, we demonstrate
a strategy to preorganize the conformations of aryl-triazole
pentads using intramolecular hydrogen bonds to increase the
Cl- affinity without forming macrocycles.
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Intramolecular hydrogen bonds have been used in various
types of foldamers7 to preorganize their conformations and
assist folding. For instance, aromatic oligo-amide,8 -urea,9

and -hydrazide10 foldamers have been synthesized. Hydrogen
bonds have also been used to achieve high yield macrocy-
clizations.11 Isophthalamides with intramolecular hydrogen
bonds12 and oligoindoles with metal binding13 showed an
increase in the anion binding constant. Recently, triazole
C-H· · ·O hydrogen bonds have been investigated with the
aid of X-ray crystallography.14 Therein, it was also observed
that the triazole C-H group forms intermolecular hydrogen
bonds with triazole N2/N3 atoms in the crystal. It is
noteworthy that the N3 of a triazole could serve as a hydrogen
bond acceptor. We envisioned, therefore, that the triazole’s
N3 nitrogen could be used as an intramolecular hydrogen
bonding site to preorganize aryl-triazole pentads.

Pentad 1 (Scheme 1) was designed to have two hydroxyl
groups on the central phenylene that could form hydrogen

bonds with the triazoles on either side. Although electron-
donating groups on phenylene have been shown15 to decrease
the binding affinity in previous studies on triazolophanes,1b

we assumed that preorganization would be the dominant
factor in this case. t-Butyl groups were used on the terminal

phenyls for the purpose of solubility. Pentad 2, which does
not have hydroxyl groups, was prepared as a control.

Synthetic routes for pentads 1 and 2 are shown in Scheme
1. Diiodoresorcinol (3) was protected with tetrahydropyran
(THP) groups using dihydropyran (DHP) with a catalytic
amount of pyridinium p-toluenesulfonate (PPTS) to give 4.
Sonogashira coupling of 4 with trimethylsilylacetylene
followed by desilylation provided diacetylene 5 in 95% yield.
5 was “clicked”16 with aryl azide 6, and then the THP groups
were removed to afford pentad 1 in a moderate yield. Aryl
triazole pentad 2 was prepared by click reaction between 6
and 7. All compounds were fully characterized.17 2D NOESY
studies on 1 (strong Ha,b and Hb,c cross peaks) and 2 (medium
Ha,b, Hb,c, and Hb,f cross peaks) are consistent with greater
preorganization of 1.17

The 1H NMR titration (Figure 1) of 1 and 2 with
tetrabutylammonium chloride (TBACl) in CD2Cl2 provides
insight into the structures of the resulting complexes in
solution. The downfield position of the -OH 1H NMR signal
in pentad 1 (10.9 ppm), compared to 3 (5.4 ppm), indicates
that it is deshielded by hydrogen bonding. Upon addition of
TBACl, pentads 1 and 2 both showed large downfield shifts
of the triazoles’ Hb and central phenylene’s Ha protons. The
R-CH2 proton of the TBA+ cation peak also shifted in both
titrations indicating that TBA+ is involved in the solution-
phase equilibria. Additionally, the -OH signal of 1 did not
have a large peak shift, which implies that it does not have
a direct interaction with Cl-.

Quantitative analysis of the 1H NMR titration data was
achieved using combinations of the following equilibria

In addition to formation of the 1:1 complex (P·Cl-, Ka),
we included the ion pairing,18 both competitive with TBACl
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Scheme 1. Syntheses of Pentads 1 and 2

P + Cl- ) P · Cl- Ka
(1)

TBA+ + Cl- ) TBA+ · Cl- Kion (2)

P + TBA+ · Cl- ) P · Cl- · TBA+ Kipc (3)

P · Cl- + TBA+ ) P · Cl- · TBA+ Kipc
′

(P: Pentad 1 or 2)
(4)
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(Kion)
19 and as the ion-paired complex (P·Cl-·TBA+, Kipc or

Kipc′). The latter was inferred from peak shifts of the TBA+

signal.17 Data fittings (Table 1)17 were conducted using
HypNMR.20 Fitting of the data for 2 is based on the

assumption that Kipc′ (1) is equal to Kipc′ (2), i.e., complexes
1·Cl- and 2·Cl- have similar structures.

The anion binding strength (Table 1) of preorganized
pentad 1 is ∼50 times greater than 2 (∆∆G ) 9.5 kJ mol-1).
This enhancement is similar to isophthalamide (∆∆G ) 8.2

kJ mol-1)12 and indole (∆∆G ) 9.1 kJ mol-1)13 receptors.
All three systems are consistent with the entropy content of
rotation about sp2-sp2 single bonds.21 While the C-H
hydrogen bond of 1 will also be enhanced by polarization,17

preorganization seems to dominate.
The intramolecular hydrogen bond is observed in the X-ray

crystal structure of pentad 8 (Figure 2)17 where the backbone

is preorganized into a crescent. Two OH· · ·N3 hydrogen
bonds are formed, and the triazole C-H forms a hydrogen
bond with the benzylether’s oxygen atom.14

In conclusion, intramolecular hydrogen bonds between
hydroxyl groups and triazole N3 preorganize the pentad
backbone for Cl- binding to enhance the binding constant.
Such intramolecular hydrogen bonds could be further
extended to preorganize foldamers and receptors.
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Figure 1. 1H NMR titration (5 mM CD2Cl2, 298 K) of 1 and 2
with increasing equivalents of TBACl.

Table 1. Equilibrium Constants (M-1) and Free Energies
(kJ·mol-1) Obtained from Fitting the 1H NMR Data

Ka Kion Kipc Kipc′

(∆G) (∆G) (∆G) (∆G)

1
46800 ( 2500 72000 ( 5000 360 ( 10 550 ( 80
(-26.6) (-27.7) (-14.6) (-15.6)

2
1000 ( 250 72000 ( 5000 8 ( 1 550 ( 80
(-17.1) (-27.7) (-5.2) (-15.6)

Figure 2. Crystal structure of pentad 8. Non-hydrogen atoms are
drawn with 50% probability ellipsoids.
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